Abstract

PURPOSE:

To determine if isoflurane anesthesia without surgery causes systemic inflammation in children. Inflammation is targeted as responsible for the development of many neurologic pathologies. The effect will be evaluated by measuring serum cytokine levels before and after isoflurane anesthesia. The possible neurotoxic effect of anesthetic agents is a concern in pediatric anesthesia. Questions remain as to the true effects of anesthesia alone on systemic inflammation. The current study assesses systemic inflammatory response to general anesthesia in children not exposed to surgical stress.

METHODS:

Twenty-five patients, aged 6 months to 11 years undergoing MRI scanning were recruited. Patients with ASA Physical Status Classification >II, known neurologic disease, prematurity, recent infection, or current treatment with anti-inflammatory medications were excluded. Each patient received a sevoflurane induction, peripheral intravenous catheterization, and laryngeal mask airway placement. Isoflurane was titrated to ensure adequate depth of anesthesia. Two peripheral blood samples were obtained: one immediately after placement of the PIV and one upon arrival to the post-anesthesia care unit. Serum cytokine levels were compared between pre- and post-isoflurane time points using paired t tests.

RESULTS:

For all patients, interleukin-1β increased after isoflurane when compared to pre-isoflurane samples (pre = 25.97 ± 9.01, post = 38.53 ± 16.56, p = 0.0002). Serum levels of IL-6 (pre = 2.28 ± 2.27, post = 2.04 ± 2.15, p = 0.146) and tumor necrosis factor-α (pre = 94.26 ± 18.07, post = 85.84 ± 12.12, p = 0.057) were not significantly changed. Interleukin-10 and vascular endothelial growth factor were undetectable in pre- and post-isoflurane samples at a minimum detection threshold of 6.6 and 10 pg/ml, respectively.

CONCLUSIONS:

A brief (approximately 60 min) exposure to isoflurane general anesthesia, without induced surgical stress, significantly increased serum IL-1β, a selective activation marker of systemic inflammation (IL-1β pathway).

READ MORE