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Very few issues (if any) within paediatric anaes-

thesia have, during the past roughly 15 years,

caused so much concern and emotional distur-

bances as a plethora of animal studies that

repeatedly have shown that exposure to most of

the currently used anaesthetics during a vulner-

able period of brain development (i.e. brain

growth spurt or peak of synaptogenesis) may

possibly lead to neurodegeneration (particularly

apoptosis) and abnormal synaptic develop-

ment.1–4 Importantly, the observed morphologi-

cal abnormalities are associated with functional

deficits in learning and behaviour later in life.

Initial studies were mainly performed in imma-

ture rodent pups, but more recent studies have

included non-human primates.5–7 Given the

number of neonates, infants and young children

anaesthetized annually worldwide, these find-

ings could have significant public health impli-

cations.

This has obviously raised concern in the pae-

diatric anaesthetic community about the poten-

tial effects in human babies that are exposed to

anaesthesia in early life and the anxiety level

has increased further, mainly in the USA,8–11

where debatable epidemiologic studies (single-

centre studies, small samples sizes, inclusion of

multiple surgeries, migration problems, multi-

ple and interrelated outcomes, large age span

with few neonates and infants) point to similar

long-term effects in children that have been

exposed to anaesthesia during infancy.12–21

Hence, all the above has resulted in position

statements from various societies and govern-

mental bodies regarding anaesthesia in early

life8–11 and very substantial NIH grant money

has been allocated to further research within

this field.

Fortunately, much more robust, large-scale

and nationwide epidemiologic studies from Eur-

ope (mainly the Netherlands, Denmark and

most recently Sweden)22–25 have failed to find

any relevant negative effects of anaesthetic expo-

sure in young children. There are also a number

of fundamental issues that challenge the indi-

viduals or the research groups that are on an

“Apoptosis crusade”:

The original animal studies on anaesthesia-

related neurotoxicity and the developing brain

were never driven by any clear-cut or well-

defined associations between exposure to gen-

eral anaesthesia and subsequent specific neu-

rocognitive deficits in human infants.3,26 Rather,

the pressure was driven by established (animal)

research areas focusing on the foetal alcohol

syndrome and long-term exposure to certain

anti-epileptic drugs. Hence, given the antici-

pated (but unknown) mechanisms of actions

behind these conditions or relationships it was

deemed likely to expect that anaesthetic drugs
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may also produce neuronal damage in similar

experimental settings. Indeed, this immediately

was shown to be the case, and resulted in

numerous publications (mainly pre-clinical,

review and commentary) and academic posi-

tions related to the topic, because real transla-

tional conclusions are impossible to attain.

However, we would advise people to relax

because if it really was that harmful to be anaes-

thetized in early life, we would most likely have

suspected this phenomenon ages ago.26,27

Translating these animal studies into a human

clinical context is obviously difficult. How do

various developmental stages of brain develop-

ment in animal models translate into humans?

The anaesthetic techniques and managements

used in the majority of animal (rodent) studies

are extremely different to normal clinical prac-

tice, i.e. the use of supra-clinical doses and long

duration of exposure to anaesthetic drugs some-

times resulting in excessively high mortality

(20–80%). Additionally, the use of multiparame-

ter monitoring and control of airway and respi-

ration are difficult (or even impossible) due to

the small size of the immature animal pups,

which also precludes repeated blood gas and

glucose measurements due to small circulating

blood volumes.3,26 This may be of utmost

importance. A recent animal study by Wu et al.

compared the effects of mechanical ventilation

and spontaneous breathing on outcome in 14-

day-old rats exposed to isoflurane and sevoflu-

rane. Compared with mechanical ventilated rats,

spontaneous breathing rats had significantly

higher mortality, neuroapoptosis and impaired

neurocognitive outcome.28

Furthermore, recent rodent studies have

shown that if immature neonatal rodents are

exposed to “an enriched environment”, i.e. were

allowed access to mothers and “toys” in their

cage, instead of an environment of sensory

deprivation, it is no longer possible to repro-

duce any negative long-term effects.7

The majority of studies have used rodent pups

at post-natal day 7 (PD7) as this is the optimal

time to detect increased apoptosis in the most

susceptible parts of the brain (e.g. stria termi-

nalis, olfactory bulb). This is of cause the right

time if you wish to provoke apoptosis in this

context. However, PD7 corresponds to anaes-

thetic exposure of an extremely premature child

and not to the major target population of term

babies and young infants where PD10-14 is

much more appropriate.29 The ability to show

increased apoptosis at PD7 is therefore of doubt-

ful value (for more details www.translating-

time.net).

Many of us have experienced children coming

back for follow-up CT or MRI scans due to sub-

stantial intracranial haemorrhage in the neonatal

period or some other major cerebral insult at an

early age. In a number of these children more or

less an entire hemisphere is “missing” or signifi-

cantly damaged, yet it is very difficult clinically

to detect this. Thus, the human brain has a

tremendous and phenomenal potential for neu-

ral plasticity and compensation after major cere-

bral insults in early life. Considering the fact

that the fraction of brain cells that undergo

enhanced (95–40) programmed cell death in

these studies in fact is less than 0.1% of the

total number of cerebral neurons30 it seems very

unlikely that this tiny and discrete extra loss of

brain cells should be associated with any long-

term effects later in life.

Despite the inherent differences in the above-

mentioned cohort studies, why are there such

striking differences between the epidemiologic

studies from North America and the epidemio-

logic studies generated (mainly) in Europe? Pri-

vate/insurance based health care vs. mainly

national health care systems with access for

everyone? Differences in the access to and qual-

ity of the school systems between the conti-

nents? Or rather a desperate desire to keep and

expand the NIH funding for the research group?

Regardless of everything above, neonates and

infants require and need important surgical

interventions to be performed without delay,

and do for both humanitarian and medical rea-

sons need high-qualitative anaesthetic care

despite any minor consequences this may or

may not have later in life.

Meanwhile, the first reports of prospective tri-

als are emerging. The recent 2-year interim anal-

ysis of the GAS study reports that sevoflurane

exposure of up to 1 h in infancy (up to

60 weeks post-conceptual age) does not increase

the risk of adverse neurodevelopmental out-

come.31 Even if this is considered only as a sec-

ondary outcome of this very important large

prospective randomized clinical trial it is consis-
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tent with the largest cohort studies published so

far as well as the most recent infant primate

data who underwent rigorously controlled

sevoflurane anaesthesia and subsequent housing

within their natural surroundings and nurtured

by their mothers.7 Moreover, when the primary

neurocognitive outcome measure of the GAS

study is analysed 3 years from now (when the

children are age 5 years) the results will most

likely be similar. This does not imply that

anaesthesia is “safe” in young children, because

these results cannot be extrapolated to longer

and multiple anaesthetics and extremely prema-

ture infants. However, it will be very difficult to

get any scientific proof of longer anaesthetics

and almost impossible to get proof regarding

multiple anaesthetic exposures (RCTs will be

complicated to perform; time consuming, labori-

ous and the numbers will be too small). It

seems more sensible to focus on all the other

factors32–34 that affect outcomes in young peri-

operative children (www.safetots.org). Maybe

the skill and dedication of the anaesthetist is

much more important than what drugs are being

used?35
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