News and Events

SmartTots and IARS News, Press Releases and Events
Panda Symposium

SmartTots – Perspectives from the Front Lines

Millions of children undergo surgery annually. Recent studies suggest there may be reason for concern. This video, featuring Dr. Dean Andropoulos, Dr. Peter Davis, and Dr. Caleb Ing, provides a summary as to why research is needed and the type that is needed.

SmartTots to Help Make Anesthetics and Sedatives Safer for Children

Dr. Janet Woodcock, director of the Center for Drug Evaluation and Research at the Food and Drug Administration, and Dr. Michael Roizen, of the International Anesthesia Research Society, unveil a new partnership that aims to make anesthesia safer for children.

Pediatric Anesthesia Questions and Myths-Mayo Clinic

Dr. Randall Flick at Mayo Clinic “debunks myths” and answers common questions raised by parents in regard to anesthesia.

Neonatal administration of a subanaesthetic dose of JM-1232(-) in mice results in no behavioural deficits in adulthood.

In animal models, neonatal exposure of general anaesthetics significantly increases apoptosis in the brain, resulting in persistent behavioural deficits later in adulthood. Consequently, there is growing concern about the use of general anaesthetics in obstetric and paediatric practice. JM-1232(-) has been developed as a novel intravenous anaesthetic, but the effects of JM-1232(-) on the developing brain are not understood. Here we show that neonatal administration of JM-1232(-) does not lead to detectable behavioural deficits in adulthood, contrarily to other widely-used intravenous anaesthetics.

Maternal anesthesia with sevoflurane during the mid-gestation induces social interaction deficits in offspring C57BL/6 mice.

Sevoflurane anesthesia in pregnant mice could induce neurotoxicity in the developing brain and disturb learning and memory in the offspring mice. Whether it could impair social behaviors in the offspring mice is uncertain. Therefore, we assessed the neurobehavioral effect of in-utero exposure to sevoflurane on social interaction behaviors in C57BL/6 mice.

Repeated Neonatal Isoflurane Exposure is Associated with Higher Susceptibility to Chronic Variable Stress-induced Behavioural and Neuro-inflammatory Alterations.

Numerous studies have reported that prolonged or multiple exposures to anaesthetics in early life lead to detrimental effects on brain function, most having focused on neurocognitive function, and relatively few on long term neuropsychiatric performance. The present study investigated the impact of repeated neonatal isoflurane exposure on chronic variable stress (CVS)-induced psychiatric and behavioural outcomes together with CVS-related neuronal activity and neuro-inflammatory reactivity in relevant brain circuits. In the present study, C57BL/6J mice received either three exposures to isoflurane at postnatal days 7, 8, and 9 or a control exposure.

Histone Deacetylase 2-Mediated Epigenetic Regulation is Involved in the Early Isoflurane Exposure-Related Increase in Susceptibility to Anxiety-Like Behaviour Evoked by Chronic Variable Stress in Mice.

Increasing studies report that prolonged or multiple anaesthetic exposures early in life are associated with detrimental effects on brain function. Although studies have evaluated the detrimental effects on neurocognitive function, few have focused on long-term neuropsychiatric effects. In the present study, C57BL/6 mice received either three neonatal isoflurane exposures or control exposure. Starting on postnatal day 45, the mice were either exposed or not to a chronic variable stress (CVS) paradigm, and CVS-related neuropsychiatric performance was evaluated using a series of behavioural tests.

Testosterone is Sufficient to Impart Susceptibility to Isoflurane Neurotoxicity in Female Neonatal Rats.

Volatile anesthetic exposure during development leads to long-term cognitive deficits in rats which are dependent on age and sex. Female rats are protected relative to male rats for the same exposure on postnatal day 7. Here we test our hypothesis that androgens can modulate chloride cotransporter expression to alter the susceptibility to neurotoxicity from GABAergic drugs using female rats with exogenous testosterone exposure.