Developmental neurotoxicity of ketamine, an N-methyl-d-aspartate receptor antagonist, must be considered due to its widespread uses for sedation/analgesia/anesthesia in pediatric and obstetric settings. Dose-dependent effects of ketamine on cellular proliferation in the neurogenic regions of rat fetal cortex [ventricular zone (VZ) and subventricular zone (SVZ)] were investigated in this in vivo study.


Timed-pregnant Sprague-Dawley rats at embryonic day 17 (E17) were given with different doses of ketamine intraperitoneally (0, 1, 2, 10, 20, 40, and 100 mg/kg). Proliferating cells in the rat fetal brains were labeled by injecting 100 mg/kg of 5-bromo-2′-deoxyuridine (BrdU) intraperitoneally. BrdU-labeled cells were detected by immunostaining methods. The numbers of BrdU-positive cells in VZ and SVZ of rat fetal cortex were employed to quantify proliferation in the developing rat cortex.


Ketamine dose-dependently reduced the number of BrdU-positive cells in VZ (P < 0.001) and SVZ (P < 0.001) of the rat fetal cortex. SVZ showed greater susceptibility to ketamine-induced reduction of proliferation in rat fetal cortex, occurring even at clinically relevant doses (2 mg/kg).


These data suggest that exposure to ketamine during embryogenesis can dose-dependently inhibit the cellular proliferation in neurogenic regions of the rat fetal cortex.