News and Events

SmartTots and IARS News, Press Releases and Events
Panda Symposium

SmartTots – Perspectives from the Front Lines

Millions of children undergo surgery annually. Recent studies suggest there may be reason for concern. This video, featuring Dr. Dean Andropoulos, Dr. Peter Davis, and Dr. Caleb Ing, provides a summary as to why research is needed and the type that is needed.

SmartTots to Help Make Anesthetics and Sedatives Safer for Children

Dr. Janet Woodcock, director of the Center for Drug Evaluation and Research at the Food and Drug Administration, and Dr. Michael Roizen, of the International Anesthesia Research Society, unveil a new partnership that aims to make anesthesia safer for children.

Pediatric Anesthesia Questions and Myths-Mayo Clinic

Dr. Randall Flick at Mayo Clinic “debunks myths” and answers common questions raised by parents in regard to anesthesia.

Oct 8 – 11, SmartTots in San Diego!

Oct 8 – 11, SmartTots in San Diego!

Society for Pediatric Anesthesia 35th Annual Meeting — October 8, 2021 San Diego, California. 

Anesthesiology 2021 — October 8-12, 2021 San Diego, California. 

Neuroprotective Effects of Dexmedetomidine on the Ketamine-Induced Disruption of the Proliferation and Differentiation of Developing Neural Stem Cells in the Subventricular Zone.

Ketamine disrupts the proliferation and differentiation of developing neural stem cells (NSCs). Therefore, the safe use of ketamine in pediatric anesthesia has been an issue of increasing concern among anesthesiologists and children’s parents. Dexmedetomidine (DEX) is widely used in sedation as an antianxiety agent and for analgesia. DEX has recently been shown to provide neuroprotection against anesthetic-induced neurotoxicity in the developing brain. The aim of this in vivo study was to investigate whether DEX exerted neuroprotective effects on the proliferation and differentiation of NSCs in the subventricular zone (SVZ) following neonatal ketamine exposure.

NPAS4 suppresses propofol-induced neurotoxicity by inhibiting autophagy in hippocampal neuronal cells.

Propofol, a general intravenous anesthetic, has been demonstrated to cause a profound neuroapoptosis in the developing brain followed by long-term neurocognitive impairment. Our study aimed to examine the neuroprotective effect of neuronal PAS domain protein 4 (NPAS4), an activity-dependent neuron-specific transcription factor, on propofol-induced neurotoxicity in hippocampal neuronal HT22 cells. The differentially expressed genes in HT22 cells after treatment with propofol were screened from Gene Expression Omnibus dataset GSE106799. NPAS4 expression in HT22 cells treated with different doses of propofol was investigated by qRT-PCR and Western blot analysis.

Effect of operative trauma and multiple propofol anesthesia on neurodevelopment and cognitive function in developmental rats.

To investigate the effect of multiple propofol anesthesia and operative trauma on neuroinflammation and cognitive function in development rats and its mechanism. A total of 104 13-day-old neonatal Sprague-Dawley rats were randomly divided into 4 groups with 26 rats in each group: control group was treated with saline q.d for propofol group was treated with propofol q.d for surgery group received abdominal surgery under local anesthesia and then treated with saline q.d for surgery with propofol group received propofol anesthesia plus abdominal surgery under local anesthesia with ropivacaine at d1, then treated with propofol q.d for At d2 of experiment, 13 rats from each group were sacrificed and brain tissue samples were taken, the concentration of TNF-α in hippocampus was detected with ELISA, the expression of caspase-3 and c-fos in hippocampal tissue was determined with immunohistochemical method, the number of apoptotic neurons in hippocampus was examined with TUNEL assay. Morris water maze test was used to examine the cognitive function of the rest rats at the age of 60 d, and the TNF-α concentration, caspase-3, c-fos expressions and the number of apoptotic neurons in hippocampus were also detected.

FOXO3 Regulates Sevoflurane-Induced Neural Stem Cell Differentiation in Fetal Rats

With the increase in fetal surgeries, the effect of maternal anesthesia on progeny has attracted much attention. Our previous studies have demonstrated that 3.5% sevoflurane maternal exposure resulted in over-activated autophagy and cognitive impairment in the offspring. The autophagy activation resulted in increased apoptosis and decreased proliferation. However, the effects of sevoflurane on neural stem cell (NSC) differentiation is unclear. There is evidence that autophagy might participate in anesthesia-induced NSC differentiation. Firstly, we examined the effects of sevoflurane on NSC differentiation and explored possible mechanisms. Then, we investigated whether autophagy was related to differentiation.

Inhibiting PDE7A Enhances the Protective Effects of Neural Stem Cells on Neurodegeneration and Memory Deficits in Sevoflurane-Exposed Mice.

Sevoflurane is widely used in general anesthesia, especially for children. However, prolonged exposure to sevoflurane is reported to be associated with adverse effects on the development of brain in infant monkey. Neural stem cells (NSCs), with potent proliferation, differentiation, and renewing ability, provide an encouraging tool for basic research and clinical therapies for neurodegenerative diseases. We aim to explore the functional effects of injecting NSCs with phosphodiesterase 7A (PDE7A) knock-down in infant mice exposed to sevoflurane.