PLoS One, January 2014.
Wu B, Yu Z, You S, Zheng Y, Liu J, Gao Y, Lin H, Lian Q


BACKGROUND: Volatile anesthetics are widely used in pediatric anesthesia but their potential neurotoxicity raise significant concerns regarding sequelae after anesthesia. However, whether physiological disturbance during anesthetic exposure contributes to such side effects remains unknown. The aim of the current study is to compare the neurotoxic effects of isoflurane and sevoflurane in 14 day old rat pups under spontaneous breathing or ventilated conditions.

METHODS: Postnatal 14 day rats were assigned to one of five groups: 1) spontaneous breathing (SB) + room air (control, n = 17); 2) SB + isoflurane (n = 35); 3) SB + sevoflurane (n = 37); 4) mechanical ventilation (MV) + isoflurane (n = 29); 5) MV + sevoflurane (n = 32). Anesthetized animal received either 1.7% isoflurane or 2.4% seveoflurane for 4 hours. Arterial blood gases and blood pressure were monitored in the anesthetized groups. Neurodegeneration in the CA3 region of hippocampus was assessed with terminal deoxynucleotidyl transferase-mediated DNA nick-end labeling immediately after exposure. Spatial learning and memory were evaluated with the Morris water maze in other cohorts 14 days after experiments.

RESULTS: Most rats in the SB groups developed physiological disturbance whereas ventilated rats did not but become hyperglycemic. Mortality from anesthesia in the SB groups was significantly higher than that in the MV groups. Cell death in the SB but not MV groups was significantly higher than controls. SB + anesthesia groups performed worse on the Morris water maze behavioral test, but no deficits were found in the MV group compared with the controls.

CONCLUSIONS: These findings could suggest that physiological disturbance induced by isoflurane or sevoflurane anesthesia may also contribute to their neurotoxicity.

Read full article in PLoS One