Dexmedetomidine has been reported to ameliorate propofol-induced neurotoxicity in neonatal animals. However, the underlying mechanism is still undetermined. Glycogen synthase kinase-3β (GSK-3β), cycline dependent kinase-5 (CDK5) and Rho-kinase (RhoA) pathways play critical roles in neuronal development. The present study is to investigate whether GSK-3β, CDK5 and RhoA pathways are involved in the neuroprotection of dexmedetomidine. Seven-day-old (P7) Sprague-Dawley rats were anesthetized with propofol for 6 h. Dexmedetomidine at various concentrations were administered before propofol exposure. Neuroapoptosis, the neuronal proliferation and the level of neurotransmitter in the hippocampus were evaluated. The effects of GSK-3β inhibitor SB415286, CDK5 inhibitor roscovitine or RhoA inhibitor Y276321 on propofol-induced neurotoxicity were assessed. Propofol induced apoptosis in the hippocampal neurons and astrocytes, inhibited neuronal proliferation in the DG region, down-regulated the level of γ-aminobutyric acid (GABA) and glutamate in the hippocampus, and impaired long-term cognitive function. These harmful effects were reduced by pretreatment with 50 μg·kg-1 dexmedetomidine. Moreover, propofol activated GSK-3β and CDK5 pathways, but not RhoA pathway, by reducing the phosphorylation of GSK-3β (ser 9), increasing the expression of CDK5 activator P25 and increasing the phosphorylation of their target sites on CRMP2 shortly after exposure. These effects were reversed by pretreatment with 50 μg·kg-1 dexmedetomidine. Furthermore, SB415286 and roscovitine, not Y276321, attenuated the propofol-induced neuroapoptosis, brain cell proliferation inhibition, GABA and glutamate downregulation, and learning and memory dysfunction. Our results indicate that dexmedetomidine reduces propofol-induced neurotoxicity and neurocognitive impairment via inhibiting activation of GSK-3β/CRMP2 and CDK5/CRMP2 pathways in the hippocampus of neonatal rats.

Read More