Abstract
The potential for commonly used anesthetics and sedatives to cause neuroapoptosis and other neurodegenerative changes in the developing mammalian brain has become evident in animal studies over the past 15 years. This concern has led to a number of retrospective studies in human infants and young children, and some of these studies observed an association between exposure to general anesthesia as an infant, and later neurobehavioral problems in childhood. This association is particularly evident for prolonged or repeated exposures. Because of the significant growth of fetal interventions requiring sedation and analgesia for the fetus, or because of maternal anesthetic effects, this concern about anesthetic neurotoxicity is relevant for the fetus. The potential for anesthetic neurotoxicity is the most important clinical and research problem in the field of pediatric anesthesiology. This review will first briefly summarize the rapid brain growth and development in the fetus and neonate. Next, animal model data of anesthetic neurotoxicity in the fetus and neonate will be presented, followed by a review of recent human clinical anesthetic neurotoxicity trials. Finally, the rationale for studying dexmedetomidine as a potential neuroprotectant agent in anesthetic neurotoxicity will be reviewed along with study design for two human clinical trials involving dexmedetomidine.