Neuropsychopharmacology, June 2014.
Stratmann G, Lee J, Sall JW, Lee BH, Alvi RS, Shih J, Rowe AM, Ramage TM, Chang FL, Alexander TG, Lempert DK, Lin N, Siu KH, Elphick SA, Wong A, Schnair CI, Vu AF, Chan JT, Zai H, Michelle KW, Anthony AM, Barbour KC, Ben-Tzur D, Kazarian NE, Lee JYY, Shen JR, Liu E, Behniwal GS, Lammers CR, Quinones Z, Aggarwal A, Cedars E, Yonelinas AP, Ghetti S.
Abstract
Anesthesia in infancy impairs performance in recognition memory tasks in mammalian animals, but it is unknown if this occurs in humans. Successful recognition can be based on stimulus familiarity or recollection of event details. Several brain structures involved in recollection are affected by anesthesia-induced neurodegeneration in animals. Therefore, we hypothesized that anesthesia in infancy impairs recollection later in life in humans and rats. Twenty eight children ages 6-11 who had undergone a procedure requiring general anesthesia before age 1 were compared to twenty eight age- and gender-matched children who had not undergone anesthesia. Recollection and familiarity were assessed in an object recognition memory test using receiver operator characteristic analysis. In addition, IQ and Child Behavior Checklist scores were assessed. In parallel, thirty three 7-day old rats were randomized to receive anesthesia or sham anesthesia. Over ten months, recollection and familiarity were assessed using an odor recognition test. We found that anesthetized children had significantly lower recollection scores and were impaired at recollecting associative information compared to controls. Familiarity, IQ, and Child Behavior Checklist scores were not different between groups. In rats, anesthetized subjects had significantly lower recollection scores than controls while familiarity was unaffected. Rats that had undergone tissue injury during anesthesia had similar recollection indices as rats that had been anesthetized without tissue injury. These findings suggest that general anesthesia in infancy impairs recollection later in life in humans and rats. In rats, this effect is independent of underlying disease or tissue injury.
Read full article in Neuropsychopharmacology