Abstract
General anesthetics are commonly used in major surgery. To achieve the depth of anesthesia for surgery, patients are being subjected to a variety of general anesthetics, alone or in combination. It has been long held an illusory concept that the general anesthesia is entirely reversible and that the central nervous system is returned to its pristine state once the anesthetic agent is eliminated from the active site. However, studies indicate that perturbation of the normal functioning of these targets may result in long-lasting desirable or undesirable effects. This review focuses on the impact of general anesthetic exposure to the brain and summarizes the molecular and cellular mechanisms by which general anesthetics may induce long-lasting undesirable effects when exposed at the developing stage of the brain. The vulnerability of aging brain to general anesthetics, specifically in the context of cognitive disorders and Alzheimer’s disease pathogeneses are also discussed. Moreover, we will review emerging evidence regarding the neuroprotective property of xenon and anesthetic adjuvant dexmedetomidine in the immature and mature brains. In conclusion, “mixed picture” effects of general anesthetics should be well acknowledged and should be implemented into daily clinical practice for better patient outcome.