Cell Biochem Funct, December 2014.
Zhong Y, Liang Y, Chen J, Li L, Qin Y, Guan E, He D, Wei Y, Xie Y, Xiao Q
Abstract
Propofol is widely used in paediatric anaesthesia and intensive care unit because of its essentially short-acting anaesthetic effect. Recent data have shown that propofol induced neurotoxicity in developing brain. However, the mechanisms are not extremely clear. To gain a better insight into the toxic effects of propofol on hippocampal neurons, we treated cells at the days in vitro 7 (DIV 7), which were prepared from Sprague-Dawley embryos at the 18th day of gestation, with propofol (0.1-1000 μM) for 3 h. A significant decrease in neuronal proliferation and a remarkable increase in neuroapoptosis were observed in DIV 7 hippocampal neurons as measured by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay and apoptosis assay respectively. Moreover, propofol treatment decreased the nuclear factor kappaB (NF-κB) p65 expression, which was accompanied by a reduction in B-cell lymphoma 2 (Bcl-2) mRNA and protein levels, increased caspase-3 mRNA and activation of caspase-3 protein. These results indicated that downregulation of NF-κB p65 and Bcl-2 were involved in the potential mechanisms of propofol-induced neurotoxicity. This likely led to the caspase-3 activation, triggered apoptosis and inhibited the neuronal growth and proliferation that we have observed in our in vitro systems.
Read full article in Cell Biochem Funct