Abstract

Background: Sevoflurane anaesthesia induces phosphorylation of the microtubule-associated protein tau and cognitive impairment in neonatal, but not adult, mice. The underlying mechanisms remain largely to be determined. Sex hormones can be neuroprotective, but little is known about the influence of testosterone on age-dependent anaesthesia effects.

Methods: Six- and 60-day-old male mice received anaesthesia with sevoflurane 3% for 2 h daily for 3 days. Morris water maze, immunoassay, immunoblotting, co-immunoprecipitation, nanobeam technology, and electrophysiology were used to assess cognition; testosterone concentrations; tau phosphorylation; glycogen synthase kinase-3β (GSK3β) activation; binding or interaction between tau and GSK3β; and neuronal activation in mice, cells, and neurones.

Results: Compared with 60-day-old male mice, 6-day-old male mice had lower testosterone concentrations (3.03 [0.29] vs 0.44 [0.12] ng ml-1; P<0.01), higher sevoflurane-induced tau phosphorylation in brain (133 [20]% vs 100 [6]% in 6-day-old mice, P<0.01; 103 [8]% vs 100 [13]% in 60-day-old mice, P=0.77), and sevoflurane-induced cognitive impairment. Testosterone treatment increased brain testosterone concentrations (1.76 [0.10] vs 0.39 [0.05] ng ml-1; P<0.01) and attenuated the sevoflurane-induced tau phosphorylation and cognitive impairment in neonatal male mice. Testosterone inhibited the interaction between tau and GSK3β, and attenuated sevoflurane-induced inhibition of excitatory postsynaptic currents in hippocampal neurones.

Conclusions: Lower brain testosterone concentrations in neonatal compared with adult male mice contributed to age-dependent tau phosphorylation and cognitive impairment after sevoflurane anaesthesia. Testosterone might attenuate the sevoflurane-induced tau phosphorylation and cognitive impairment by inhibiting the interaction between tau and GSK3β.

Read more

Yongyan Yang et al.
British journal of anaesthesia December 2021