Early exposure to general anesthesia in children might be a potentially high-risk factor for learning and behavioral disorders. The mechanism of neurotoxicity induced by general anesthesia was not defined. miR-496 could regulate cerebral injury, while the roles of miR-496 in neurotoxicity were not elucidated. Therefore, we aimed to investigate the effects of miR-496 in neurotoxicity induced by propofol.


Primary prefrontal cortical (PFC) neurons were isolated from neonatal rats and treated with propofol to induce neurotoxicity. Cell viability was detected by (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The target relationship of miR-496 and Rho Associated Coiled-Coil Containing Protein Kinase 2 (ROCK2) was explored using luciferase assays.


Propofol decreased cell viability, promoted cell apoptosis, and decreased the expression of miR-496 in PFC neurons in a dose-dependent manner. Overexpression of miR-496 attenuated neurotoxicity induced by propofol in PFC neurons. ROCK2 was a target of miR-496, and miR-496 oppositely modulated the expression of ROCK2. Besides, propofol increased the expression of ROCK2 through inhibiting miR-496 in PFC neurons. Overexpression of miR-496 attenuated propofolinduced neurotoxicity by targeting ROCK2 in PFC neurons.


miR-496 was decreased in PFC neurons treated with propofol, and overexpression of miR-496 attenuated propofol-induced neurotoxicity by targeting ROCK2. miR-496 and ROCK2 may be promising targets for protecting propofol-induced neurotoxicity.

Read More